Question Paper Code: 30143

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Fourth Semester

Electronics and Communication Engineering

EC 3452 — ELECTROMAGNETIC FIELDS

(Common to: Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is divergance of a vector field?
- 2. Calculate the curl of gradient of the scalar field, V = 3xy yz.
- 3. Define Gauss's Law.
- 4. What is the significance of Laplacian Operator?
- 5. Define Ampere's Law.
- 6. What is the significance of magnetic vector potential?
- 7. What is the displacement current?
- 8. What is the significance of Continuity Equation?
- 9. Define skin depth
- 10. "X-rays can penetrate the human body, but light cannot". Justify.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Explain different type of coordinate systems along with examples of their use.

Or

(b) Explain Gradient, Divergence and Curl in detail along with examples. (3 + 5 + 5 = 13)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Three infinite sheets with charge density of 18 nC/m², 9 nC/m² and -24 nC/m² are located at x = 4, y = -3 and z = 0 respectively. Find the electric field intensity at

(i) (8, 0, 6) and (7.5)

(ii) (-2, -7, 1). (7.5)

Or

(b) An EM wave travels from a free space to a dielectric medium with dielectric constant $(\varepsilon_r) = 4$ and it incidents normally on the interface. If the electric field of incident wave in free space is given by:

 $E_i = E_0 \cos(\omega t - \beta z) a_y V / m$, where $\omega = 3 \times 10^9 \pi$ and $\beta = 10\pi$.

Then, calculate the value of

- (i) reflection coefficient (Γ_E) , (3)
- (ii) transmission coefficient (τ_E) , (3)
- (iii) the fraction of power transmitted into the dielectric medium and,
 (3)
- (iv) derive the expression for electric field of the transmitted wave (E_T) .